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Nonlinear density wave theory for the spiral structure of galaxies
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The theory of nonlinear waves for plasmas has been applied to the analysis of the density wave theory of
galaxies which are many-body systems of gravity. A nonlinear Schro¨dinger equation has been derived by
applying the reductive perturbation method on the fluid equations that describe the behavior of infinitesimally
thin disk galaxies. Their spiral arms are characterized by a soliton and explained as a pattern of a propagating
nonlinear density wave.

PACS number~s!: 98.52.Nr, 52.35.Mw
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I. INTRODUCTION

A galaxy is a many-body system composed of stars in
acting with each other through a long range force, grav
@1#. There are a lot of common characteristics between
physics of galaxies and plasmas, which are systems
charged particles interacting through the Lorentz force. M
roscopic description of these systems can be casted in a
model including internal forces which bring about collecti
behavior such as waves or instabilities@1,2#.

The spiral of a galaxy has been explained by the den
wave theory@1,3,4# as a pattern of a rotating density wave
a disk. This theory resolves the winding, i.e., the spiral ar
must be wound up far beyond the observed structure in
mal ages of galaxies if we assume a simple rotational de
mation ansatz@1#. Lin and Shu@3# treated galaxies as com
pressible fluids and showed that the linearized fl
equations for an infinitesimally thin disk galaxy have a spi
wave solution that is proportional to exp@vt2mu1lf(r)#,
wherev is the frequency of the wave,m is the azimuthal
wave number~which is also the number of arms of the ga
axy!, l is a constant (l@1), f (r ) is the phase factor of the
wave in the radial direction~Fig. 1!. They obtained the dis
persion relation

el f 8~r !5
k22~v2mV!2

2pGn0
, ~1!

wheree is the sign off 8(r ), V(r ) is the angular frequency
of the rotation of the disk,n0(r ) is the equilibrium surface
mass density,G is the gravitational constant, andk is the
epicyclic frequency defined by

k2~r !54V2S 11
r

2V

dV

dr D . ~2!

The physical meaning of the epicyclic frequency is explain
as follows: Orbits of stars in a galaxy are usually not ex
circles and always have a certain amount of randomnes
one of the perturbed orbits is observed on a framework
tating with the mean angular velocity around the center
the galaxy, it is known to be a small circle@1#. The fre-
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quency of such small cyclic motions that originate from ra
domness is called the epicyclic frequency.

In this paper, we extend Lin and Shu’s analysis to t
nonlinear regime and characterize the spiral structure a
asymptotic solitonlike nonlinear wave. Using the reducti
perturbation theory@5#, we derive a nonlinear equation fo
the envelope wave, which resembles a Schro¨dinger equation.

Within the framework of linear approximation, the patte
of galaxies is still undetermined, because any linear com
nation of spiral waves solves the linear equations. A spec
structure stems from the nonlinear effect that yields coupl
among linear modes and selects a special pattern which
sustain for a long term.

II. NONLINEAR DENSITY WAVE THEORY AND
SOLITON STRUCTURE

We consider a galaxy whose mass density is concentr
on an infinitesimally thin disk. The set of the fluid equatio
~the mass conservation, the momentum equations, and P
son’s equation! reads, in the cylindrical polar coordinate
(r ,u,z)

]n

]t
1

1

r F ]

]r
~rnu!1

]

]u
~nv !G50, ~3!

]u

]t
1u

]u

]r
1

v
r

]u

]u
2

v2

r
5

]f

]r
, ~4!

FIG. 1. An example of curves on which the phase of exp@vt
2mu1lf(r)# is constant. These curves are explained as the arm
the galaxy in the linear density wave theory.
5710 ©2000 The American Physical Society
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]v
]t

1u
]v
]r

1
v
r

]v
]u

1
uv
r

5
1

r

]f

]u
, ~5!

]2f

]r 2
1

1

r

]f

]r
1

1

r 2

]2f

]u2
1

]2f

]z2
524pGn~r ,u!d~z!, ~6!

wheren is the surface mass density,u andv are ther com-
ponent and theu component of the fluid velocity, respec
tively, and f is the negative of the gravitational potentia
Mean fields are given byn5n0(r ), u50, v5rV(r ).0.
Here we normalizer andz by the mean wave length of th
carrier wave in the radial direction 2pR/l, whereR is the
radial size of the galaxy andl@1 is a dimensionless con
stant,t by the period of the carrier wave 2p/v, n by n0(0),
u andv by the phase velocityvR/l, f by v2R2/l2, andG
by v2R/2n0(0)l.

Using a small parameter«, we transform the independen
variables (r ,u,z) into stretched variables (j,h,t) as

j5«~r 2Vt!,

h5«2u, ~7!

t5«2t,

whereV is a constant. The partial derivatives translates a

]

]r
5«

]

]j
,

]

]u
5«2

]

]h
, ~8!

]

]t
52«V

]

]j
1«2

]

]t
.

We expand the dependent variables around their mean va
as

n5n01 (
n51

`

«n (
l 52`

`

nl
(n)~j,h,t!exp$ i l @vt2mu1l f ~r !#%,

~9!
es

u5 (
n51

`

«n (
l 52`

`

ul
(n)~j,h,t!exp$ i l @vt2mu1l f ~r !#%,

~10!

v5rV1 (
n51

`

«n (
l 52`

`

v l
(n)~j,h,t!exp$ i l @vt2mu1l f ~r !#%,

~11!

where, we assumenl
(n) , ul

(n) , and v l
(n) vary much slower

than exp$il @vt2mu1lf(r)#%. The reality conditions on physi
cal quantities demand

nl
(n)* 5n2 l

(n) , ~12!

ul
(n)* 5u2 l

(n) , ~13!

v l
(n)* 5v2 l

(n) , ~14!

where asterisks denote the complex conjugate.
We approximate the potential gradient as

]f

]r
.2rV212pGe (

n51

`

«n(
l 51

`

Re„2inl
(n)exp$ i l @vt2mu

1l f ~r !#%…, ~15!

]f

]u
.0, ~16!

which means that the phases of]f/]r andn(n) are shifted by
p/2. Equations~15! and~16! are in principle the same as Eq
~11! of Ref. @3#, where the phase shift is given by the com
plex expression]f/]r} in (n). Note that the first term on the
right-hand side of Eq.~15! is equivalent to the zeroth-orde
gravitational field.

Substituting Eqs.~7!–~16! into the fluid equations~3!–~5!
gives
(
l 52`

`

exp$ i l @vt2mu1l f ~r !#%F F i l v2«V
]

]j
1«2

]

]tG (
n51

`

«nnl
(n)

1
«2

Vt S 12
j

Vt
« D S n0(

n51

`

«nul
(n)1 (

l 852`

`

(
n51

`

(
n851

`

«n1n8nl 2 l 8
(n) ul 8

(n8)D 1S i l l f 8~r !1«
]

]j D S n0(
n51

`

«nul
(n)D

1 (
l 852`

` S i l l f 8~r !1«
]

]j D (
n51

`

(
n851

`

«n1n8nl 2 l 8
(n) ul 8

(n8)
1

«2

Vt S 12
j

Vt
« Dn0S 2 i lm1«2

]

]h D (
n51

`

«nv l
(n)

1VS 2 i lm1«2
]

]h D (
n51

`

«nnl
(n)1

«2

Vt S 12
j

Vt
« D (

l 852`

` H S 2 i lm1«2
]

]h D (
n51

`

(
n851

`

«n1n8nl 2 l 8
(n) v l 8

(n8)J G50,

~17!
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(
l 52`

`

exp$ i l @vt2mu1l f ~r !#%F F i l v2«V
]

]j
1«2

]

]tG (
n51

`

«nul
(n)1 (

l 852`

`

(
n51

`

(
n851

`

«n1n8ul 2 l 8
(n) S i l 8l f 8~r !1«

]

]j Dul 8
(n8)

1VS 2 i lm1«2
]

]h D (
n51

`

«nul
(n)1

«2

Vt S 12
j

Vt
« D (

l 852`

`

(
n51

`

(
n851

`

«n1n8v l 2 l 8
(n) S 2 i l 8m1«2

]

]h Dul 8
(n8)

22V (
n51

`

«nv l
(n)

2
«2

Vt S 12
j

Vt
« D (

l 852`

`

(
n51

`

(
n851

`

«n1n8v l 2 l 8
(n) v l 8

(n8)G52pGe (
n51

`

«n(
l 51

`

Re„2inl
(n)exp$ i l @vt2mu1l f ~r !#%…, ~18!

(
l 52`

`

exp$ i l @vt2mu1l f ~r !#%F F i l v2«V
]

]j
1«2

]

]tG (
n51

`

«nv l
(n)1

k2

2V (
n51

`

«nul
(n)

1 (
l 852`

`

(
n51

`

(
n851

`

«n1n8ul 2 l 8
(n) S i l 8l f 8~r !1«

]

]j D v l 8
(n8)

1VS 2 i lm1«2
]

]h D (
n51

`

«nv l
(n)1

«2

VtS 12
j

Vt
« D

3 (
l 852`

`

(
n51

`

(
n851

`

«n1n8v l 2 l 8
(n) S 2 i l 8m1«2

]

]h D v l 8
(n8)

1
«2

VtS 12
j

Vt
« D (

l 852`

`

(
n51

`

(
n851

`

«n1n8ul 2 l 8
(n) v l 8

(n8)G50. ~19!
e

-

Here we used a relation

1

r
5

1

«21j1«22Vt
5

«2

Vt

1

11«j/~Vt!
.

«2

Vt S 12«
j

Vt D .

~20!

Because the coefficients in Eqs.~17!–~19! are slow functions
of t, r, and u in comparison with the ‘‘carrier’’ exp$il @vt
2mu1lf(r)#%, we can assume that each Fourier compon
is linearly independent, and hence, Eqs.~17!–~19! demand
vanishing of every Fourier coefficients separately.

Now we separate terms in Eqs.~17!–~19! into each order
of «. The coefficients of the order of«1 read ~see the Ap-
pendix!

i l vnl
(1)1 i l l f 8~r !n0ul

(1)2 i lmVnl
(1)50, ~21!

i l vul
(1)2 i lmVul

(1)22Vv l
(1)52p iGenl

(1)sgnl , ~22!

i l vv l
(1)1

k2

2V
ul

(1)2 i lmVv l
(1)50 ~23!

for each Fourier componentl. Equations~21!–~23! immedi-
ately yield the linear dispersion relation Eq.~1! and

u61
(1)52pn61

(1) , ~24!

v61
(1)57 iqn61

(1) , ~25!

where

p5
v2mV

l f 8~r !n0

, ~26!

q5
k2

2Vl f 8~r !n0

. ~27!
nt

Note that we have assumed

ul
(1)5v l

(1)5nl
(1)50 ~28!

for lÞ61, which means that the ‘‘carrier wave’’ is sinu
soidal.

The coefficients of«2 in Eqs.~17!–~19! yield relations

i l ~v2mV!nl
(2)2V

]nl
(1)

]j
1 i l l f 8~r !n0ul

(2)1
]

]j
~n0ul

(1)!

1 i l l f 8~r ! (
l 852`

`

nl 8
(1)ul 2 l 8

(1)
50, ~29!

i l ~v2mV!ul
(2)2V

]ul
(1)

]j
22Vv l

(2)

1 (
l 852`

`

i l 8l f 8~r !ul 2 l 8
(1) ul 8

(1)
52p iGenl

(2)sgnl ,

~30!

i l ~v2mV!v l
(2)2V

]v l
(1)

]j
1

k2

2V
ul

(2)

1 (
l 852`

`

i l 8l f 8~r !ul 2 l 8
(1) v l 8

(1)
50, ~31!

for each l. Substituting Eqs.~24!–~28! and l 52 into Eqs.
~29!–~31! gives

u2
(2)5b1n1

(1)2, ~32!

v2
(2)5 ib2n1

(1)2, ~33!

n2
(2)5b3n1

(1)2, ~34!
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where

b15
~v2mV!~2k214pGel f 8~r !n0!

l f 8~r !n0
2@4~v2mV!22k214pGel f 8~r !n0#

,

~35!

b252
k2~v2mV!2

l f 8~r !Vn0
2@4~v2mV!22k214pGel f 8~r !n0#

,

~36!

b35
4~v2mV!2

n0@4~v2mV!22k214pGel f 8~r !n0#
. ~37!

Similarly substituting Eqs.~24!–~28! andl 51 into Eqs.~29!
and ~31! yield

F i ~v2mV! il f 8~r !n0 0

22p iGe i ~v2mV! 22V

0
k2

2V
i ~v2mV!GF n1

(2)

u1
(2)

v1
(2)G

53
~V1n0p!

]n1
(1)

]j

2pV
]n1

(1)

]j

2 iqV
]n1

(1)

]j
4 . ~38!

Since the determinant of the matrix in Eq.~38! is zero due to
Eqs.~21!–~23!, there are no solutions to Eq.~38! unless
V5
pGn0e

v2mV
. ~39!

Equation~39! determines the group velocity of the nonline
wave. It might seem a contradiction that the right-hand s
of Eq. ~39! is a function ofr, while V is a constant. However
Eq. ~39! is locally justified by the fact that the mean field
are slow functions ofr.

Under the condition~39!, solutions to Eq.~38! cannot be
determined uniformly, because the determinant of the ma
in the left-hand side is zero. Hence we assume

n1
(2)50. ~40!

Equations~38! and ~40! yield

u1
(2)5

1

il f 8~r !n0

]

]j
@~V1n0p!n1

(1)#2
v2mV

l f 8~r !n0

n1
(2) ,

~41!

v1
(2)5

1

v2mV F S 2V
]q

]j
1q

]

]j
~n0p! Dn1

(1)1n0pq
]n1

(1)

]j G
2 iqn1

(2) . ~42!

Furthermore, we substitutel 50 into Eqs.~30! and ~31!
and use Eqs.~12! and~24!-~28!. Then the following equations
are obtained:

u0
(2)5

2p

n0
un1

(1)u2, ~43!

v0
(2)50. ~44!

The coefficients of«3 in Eqs.~17!–~19! read
i l ~v2mV!nl
(3)2V

]nl
(2)

]j
1

]nl
(1)

]t
1

1

Vt
n0ul

(1)1 i l l f 8~r !n0ul
(3)1

]

]j
~n0ul

(2)!

1 (
l 852`

` H i l l f 8~r !~nl 8
(1)ul 2 l 8

(2)
1nl 8

(2)ul 2 l 8
(1)

!1
]

]j
~nl 8

(1)ul 2 l 8
(1)

!J 2
i lmn0

Vt
v l

(1)1V
]nl

(1)

]h
50,

~45!

i l ~v2mV!ul
(3)2V

]ul
(2)

]j
1

]ul
(1)

]t
1 (

l 852`

` H i l 8l f 8~r !~ul 2 l 8
(1) ul 8

(2)
1ul 2 l 8

(2) ul 8
(1)

!1ul 2 l 8
(1)

]ul 8
(1)

]j
J 1V

]ul
(1)

]h
22Vv l

(3)52p iGenl
(3) ,

~46!

i l ~v2mV!v l
(3)2V

]v l
(2)

]j
1

]v l
(1)

]t
1

k2

2V
ul

(3)1 (
l 852`

` H i l 8l f 8~r !~ul 2 l 8
(1) v l 8

(2)
1ul 2 l 8

(2) v l 8
(1)

!1ul 2 l 8
(1)

]v l 8
(1)

]j
J 1V

]v l
(1)

]h
50,

~47!

for eachl. Substitutingl 50 into Eq.~45! and using Eqs.~12! and ~24! give

]

]j
~2Vn0

(2)1n0u0
(2)22pun1

(1)u2!50. ~48!

Substituting Eq.~43! into Eq. ~48! gives
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]n0
(2)

]j
50, ~49!

which can be immediately integrated as

n0
(2)5c~h,t!, ~50!

wherec(h,t) is an arbitrary function ofh andt. Here we
assumec[0 to obtain

n0
(2)50. ~51!

For l 51, Eqs.~45!–~47! yield

i ~v2mV!n1
(3)1 il f 8~r !n0u1

(3)1g150, ~52!

i ~v2mV!u1
(3)22Vv1

(3)22p iGen1
(3)1g250, ~53!

i ~v2mV!v1
(3)1

k2

2V
u1

(3)1g350, ~54!

where

g152V
]n1

(2)

]j
1

]n1
(1)

]t
1

n0

Vt
u1

(1)1
]

]j
~n0u1

(2)!2
in0m

Vt
v1

(1)

1V
]n1

(1)

]h
1 il f 8~r !~n1

(1)u0
(2)1n0

(2)u1
(1)1n21

(1)u2
(2)

1n2
(2)u21

(1) !, ~55!

g252V
]u1

(2)

]j
1

]u1
(1)

]t
1V

]u1
(1)

]h
1 il f 8~r !~u21

(1)u2
(2)

1u0
(2)u1

(1)!, ~56!

g352V
]v1

(2)

]j
1

]v1
(1)

]t
1V

]v1
(1)

]h
1 il f 8~r !~2u21

(1)v2
(2)

1u0
(2)v1

(1)2u2
(2)v21

(1) !. ~57!

Under the condition given by Eq.~1!, Eqs.~52!–~54! are not
independent with respect ton1

(3) , u1
(3) , and v1

(3) . Equation
~54! times 2iV/(v2mV) minus Eq.~52! times 2pGe/(v
2mV) becomes

i ~v2mV!u1
(3)22Vv1

(3)22p iGen1
(3)1

2iVg322pGeg1

v2mV

50, ~58!

where the dispersion relation Eq.~1! has been used. Compa
ing Eqs.~53! and ~58!, we obtain

~v2mV!g2522pGeg112iVg3 . ~59!

Finally, we substitute Eqs.~24!–~28!, ~32!–~34!, ~40!–~44!,
~51!, and~55!–~57! into Eq.~59! and assume thatp, q, f 8(r ),
V, andn0 vary much slower thann1

(1) . Then, we obtain
i S ]

]t
1V

]

]h Dn1
(1)1d1

]2n1
(1)

]j2
1

id2

t
n1

(1)1d3un1
(1)u2n1

(1)50,

~60!

where

d15
2V~v2mV!22pGen01V2l f 8~r !

2~v2mV!l f 8~r !
, ~61!

d25
pGen0

2l f 8~r !~mq1p!

~v2mV!2V
, ~62!

d352
3~v2mV!k2

@k212~v2mV!2#n0
2

. ~63!

Taking the limit oft→`, Eq.~60! reduces into the nonlinea
Schrödinger equation, which describes envelope solitons@6#.
We thus see that the spiral structure of galaxies approa
to a solitonlike state.

Note that exp$il @vt2mu1lf(r)#% does not express an ob
servable wave pattern any longer. In other words, the v
ablem is not a number of arms of a galaxy any longer~which
used to be in the linear theory by Lin and Shu@3#!. Instead,
exp$il @vt2mu1lf(r)#% expresses the carrier of the nonline
wave here.

III. NUMERICAL SOLUTIONS

Although Eq.~60! reduces into the nonlinear Schro¨dinger
equation in the limit oft→`, no exact solutions to Eq.~60!
have been found ford2Þ0. In this section, we study the
solutions for finitet numerically.

If d250, the analytic solution to Eq.~60! is well known
to be

n1
(1)5A sechFAA d3

2d1
~j1V1t1j0!G

3expF i S d3A2

2
2

V1
2

4d1
D t2 i

V1

2d1
~j1j1!G ~64!

for d1d3.0 or

n1
(1)5A tanhFAA2

d3

2d1
~j1V1t1j0!G

3expF i S d3A22
V1

2

4d1
D t2 i

V1

2d1
~j1j1!G ~65!

for d1d3,0, whereA, V1 , j0, andj1 are arbitrary constants
The constantA determines the amplitude and the width
the soliton,V1 ~andV) determine~s! the group velocity, and
j0 and j1 determine the initial positions of the soliton an
the carrier wave, respectively. Equations~64! and ~65! cor-
respond to the bright and dark solitons, respectively.

Figure 2 shows an analytic solution ford250 given by
Eq. ~64!. Here d15d351, A52, V15210, j056, j1
52.76, and the initial timet051. We can see that an enve
lope soliton propagates in thej direction without change of
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its shape. On the other hand, Figs. 3 and 4 show nume
solutions to Eq.~60! for d251. The initial timet050.5 in
Fig. 3 andt050.1 in Fig. 4. The initial positions of the
soliton and the carrier wave in Figs. 3 and 4 are the sam
Fig. 2. We can see from these figures that the amplitude
the solitary waves decreases as it propagates in thej direc-
tion. This result is quite natural, because the wave propa
ing in thej direction, which corresponds to the radial dire
tion, decreases its energy density@the 1/t term in Eq.~60!
comes from the 1/r terms in Eqs.~3!–~5!#.

IV. CONCLUDING REMARKS

We have derived a nonlinear Schro¨dinger-type equation
that describes a spiral structure of a galaxy. As is well kno
to plasma physics, the Langmuir wave, which is a den
wave propagating on electrons, can generate an enve
soliton that is described by a nonlinear Schro¨dinger equation.
A galaxy is a gravitational many-body system, while
plasma is an electromagnetic many-body system, which
the electrostatic limit, obeys the same set of equatio
Hence, the fact that the galactic density wave has a soli
like structure can be naturally deduced. A unique feature
the present formalism is that a thin-disk geometry is cons
ered and the soliton-like structure of a gravitational medi
is obtained.

Galaxies resemble plasmas in that their components in
act with each other through a long range force produced
the particles themselves. In particular, single-species n
neutral plasmas such as pure electron plasmas are quite

FIG. 2. An analytic solution ford250 given by Eq.~64!. Here
d15d351, A52, V15210, j056, j152.76, andt051.
al

as
of

t-

n
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in
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n-
f
-
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y

n-
mi-

lar to galaxies except that electrons are repulsive while s
are attractive. Because of this nature of galaxies and n
neutral plasmas, they exhibit similar collective phenome
such as vortices@7#.

The behavior of single-species non-neutral plasmas is
ten analyzed under the assumption that they have an infi
length in the axial direction, while galaxies are often a
sumed to have a zero thickness. The advantage of
infinite-length analysis is that the Poisson’s equation
comes two dimensional, which makes our problem co
pletely two dimensional. Then the analysis is greatly simp
fied. It is meaningful to analyze the behavior of galaxies
such a way because of its simplicity. Such an analysis is
be published elsewhere.
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APPENDIX

We show that the following two equations are equivale

(
l 52`

`

exp~ i l w!~Xl
(n)1 i lY l

(n)!1(
l 51

`

Re@2iZl
(n)exp~ i l w!#

50 ~;w!, ~A1!

FIG. 3. A numerical solution ford251. Here t050.25. The
initial position of the wave is the same as Fig. 2. We can see
the amplitude decreases as the solitary wave propagates in tj
direction.
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Xl
(n)1 i lY l

(n)1 iZl
(n)sgnl 50 ~; l !, ~A2!

whereXl
(n) , Yl

(n) , andZl
(n) are complex constants or slowl

varying functions ofw that satisfy the reality condition

Xl
(n)* 5X2 l

(n) , ~A3!

Yl
(n)* 5Y2 l

(n) , ~A4!

Zl
(n)* 5Z2 l

(n) . ~A5!

Equation~A1! can be written as

FIG. 4. A numerical solution ford251. Heret050.1.
-

(
l 52`

`

@~Xl r
(n)2 lYl i

(n)!cos~ lw!2~Xl i
(n)1 lYl r

(n)!sin~ lw!#

1 i (
l 52`

`

@~Xl i
(n)1 lYl r

(n)!cos~ lw!

1~Xl r
(n)2 lYl i

(n)!sin~ lw!#2(
l 51

`

@2Zl i
(n) cos~ lw!

12Zl r
(n) sin~ lw!#50, ~A6!

where subscripts r and i denote the real part and imagin
part, respectively. The second term of the left-hand side
Eq. ~A6! vanishes because of the reality condition Eq
~A3!–~A5!. Then Eq.~A6! becomes

(
l 50

`

@2~Xl r
(n)2 lYl i

(n)2Zl i
(n)!cos~ lw!

22~Xl i
(n)1 lYl r

(n)1Zl r
(n)!sin~ lw!] 50. ~A7!

Thus,

Xl r
(n)2 lYl i

(n)2Zl i
(n)50, ~A8!

Xl i
(n)1 lYl r

(n)1Zl r
(n)50, ~A9!

for eachl .0. Equations~A8! and ~A9! are identical to

Xl
(n)1 i lY l

(n)1 iZl
(n)50 ~ l .0!. ~A10!

Taking complex conjugate on Eq.~A10! gives

X2 l
(n)2 i lY 2 l

(n)2 iZ2 l
(n)50 ~ l .0!

⇔ Xl
(n)1 i lY l

(n)2 iZl
(n)50 ~ l ,0!.

~A11!

Equations~A10! and ~A11! are written as

Xl
(n)1 i lY l

(n)1 iZl
(n)sgnl 50 ~; l !. ~A12!
r
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