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Nonlinear density wave theory for the spiral structure of galaxies
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The theory of nonlinear waves for plasmas has been applied to the analysis of the density wave theory of
galaxies which are many-body systems of gravity. A nonlinear $ithger equation has been derived by
applying the reductive perturbation method on the fluid equations that describe the behavior of infinitesimally
thin disk galaxies. Their spiral arms are characterized by a soliton and explained as a pattern of a propagating
nonlinear density wave.

PACS numbd(s): 98.52.Nr, 52.35.Mw

I. INTRODUCTION quency of such small cyclic motions that originate from ran-

A galaxy is a many-body system composed of stars imergomness 's called the epicyclic frequency.
galaxy y y sy P In this paper, we extend Lin and Shu’s analysis to the

acting with each other through a long range force, graV'tynonlinear regime and characterize the spiral structure as an

[1]. There are a lot of common characteristics between th%symptotic solitonlike nonlinear wave. Using the reductive

Eﬁgfl?d O;t‘?gfsxﬁerﬁgnplfmjsﬁ t\,ﬁlgligréir:tez fso {ifrﬁaco_ erturbation theory5], we derive a nonlinear equation for
ged p 9 9 ' tge envelope wave, which resembles a Sdhrger equation.

e s Wil e amevor of near approxmation, e pter
9 9 of galaxies is still undetermined, because any linear combi-

behavior such as waves or instabilitj@s2]. . hation of spiral waves solves the linear equations. A specific

wave theony1,3,4] as a pattern of a rotating density wave On>§tructure stems from the nonlinear effect that yields coupling
. T P 1 rotating yw among linear modes and selects a special pattern which can
a disk. This theory resolves the winding, i.e., the spiral arms :
. sustain for a long term.
must be wound up far beyond the observed structure in nor-
mal ages of galaxies if we assume a simple rotational defor-
mation ansatf1]. Lin and Shu[3] treated galaxies as com- Il. NONLINEAR DENSITY WAVE THEORY AND

pressible fluids and showed that the linearized fluid SOLITON STRUCTURE

equations for an infinitesimally thin disk galaxy have a spiral  \ye consider a galaxy whose mass density is concentrated
wave solution that is proportional to ex—mé+Af(r)], o an infinitesimally thin disk. The set of the fluid equations
where w is the frequency of the waven is the azimuthal ihe mass conservation, the momentum equations, and Pois-

wave numbe(which is also the number of arms of the gal- 5415 equation reads, in the cylindrical polar coordinates
axy), \ is a constantX>1), f(r) is the phase factor of the (r,6,2)

wave in the radial directioifFig. 1). They obtained the dis-

persion relation on 1l o 9
—+ —| —(rnu)+ —(nv)|=0, (3
)\f’( ) Kz—(w—mQ)Z (1) ot rior a0
€ N=——ms——",
2mGng U du vau v: Ip
Y T rae T @
wheree is the sign off'(r), Q(r) is the angular frequency
of the rotation of the diskny(r) is the equilibrium surface '
mass densityG is the gravitational constant, and is the 0
epicyclic frequency defined by : \
2 _492 1+ rodo A A D) 1.
m=3 N
The physical meaning of the epicyclic frequency is explained =15 0 ——7”—f(r)+C
as follows: Orbits of stars in a galaxy are usually not exact f(r)y=r “m

circles and always have a certain amount of randomness. If

one of the perturbed orbits is observed on a framework ro- FIG. 1. An example of curves on which the phase of[etp
tating with the mean angular velocity around the center of-me-+\f(r)] is constant. These curves are explained as the arms of
the galaxy, it is known to be a small circld]. The fre- the galaxy in the linear density wave theory.
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wheren is the surface mass densityandv are ther com-
ponent and the component of the fluid velocity, respec-
tively, and ¢ is the negative of the gravitational potential.
Mean fields are given byn=ny(r), u=0, v=rQ(r)>0.
Here we normalize andz by the mean wave length of the
carrier wave in the radial direction7ZR/\, whereR is the
radial size of the galaxy and>1 is a dimensionless con-
stant,t by the period of the carrier waverd w, n by ny(0),
u andv by the phase velocityR/\, ¢ by w?R%/\?, andG
by w?R/2ny(0)\.

Using a small parameter, we transform the independent
variables (, 0,z) into stretched variablest(#,7) as

E=¢e(r—Vi),

n=g20, (7
r=¢g?t,

whereV is a constant. The partial derivatives translates as

(3’_ J

o Cag

J J

2 _ 27

305 o’ (8)
] v 2
&t_ & 5_§ 8—
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o

] e" _E u™ (&7, nexplil[wt—mo+Nf(r)]},
(10

u=
n

©

v=rQ+E s”IE v
Aol 15—«

("(&,n,nyexplil [wt—me+2f(r)]},
(17)
where, we assume(™, u(, andv(™ vary much slower

than exgil[ ot—mé-+\f(r)]}. The reality conditions on physi-
cal quantities demand

n(MW*=n(, (12
u(m* =y, (13
v|(n)* =v(_n|) , (14

where asterisks denote the complex conjugate.
We approximate the potential gradient as

[

%:—m% 277662_}1 8”21 Re(2in{Mexp{il [ wt—me
+N (DT, (15
d

which means that the phasesaas/or andn'™ are shifted by
/2. Equationg15) and(16) are in principle the same as Eq.

We expand the dependent variables around their mean valuggy) of Ref. [3], where the phase shift is given by the com-

as

n=ng+ nzl 8n|:z_oc n(M (&, n, 7)explil [ wt—mo+\f(r)]},
9

©

2 explil[wt—ma+Nf(r)]}

d

plex expressiom ¢/ ar=<in{™. Note that the first term on the
right-hand side of Eq(15) is equivalent to the zeroth-order
gravitational field.

Substituting Egs(7)—(16) into the fluid equation$3)—(5)
gives

ilw— 8V(7—§+8 —} Zl e"n{"

2 o0 oo e ]
& &
+ — 1_—8) N, euM+ > > > " nl(")l,ul(?) iINT"(r) +s— nOE g"u™
VT VT n=1 "'=— % n=1 n'=1
oo [o2] (e ] , 82
+ E (II)\f (r)+8 E E gt n|(n)|, (?)4—— 1- )no(—i|m+82—)2 g
|'=—o n=1,-1 V1 V
+Q —ilm+szi)§ 8“n(“)+8—2 1—is) i (—||m+szi)§ i e'n™ ™M =0
(97] = | VT VT [ 77 n=1 N =1 =1 | )

(17
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il V—+ —
w—E& 8 o7

Z guM+ > D> D e uf”)l,(n AM(r) +e— g)uf?)

n=1 I'=— N=1 /=1

> exp{il[wt—m6+)\f(r)]}{

|=—w

g o0 o0 o0
1_\/_78)|'2 E 2 vl(n)l,(—ll m+e %)uff‘) 292 e |(n)

) v e e .
—\S/—T(l—\%s) S>> ey ’l 27Ge Y, 8n|21 Re2in{Vexpil [ wt—mo+Nf(r)]}), (18)
A =

n=1

> explil[ot—mo+\f(r)]}

ilw— 8V—+8 —}Z snv(n)-f-— 2 g"u(™

n+n’, (n) L .. _ . n_ (n) _ =
+|,§_m ngl ngls u_ I,(I| N (r)+s(9§ vl, +0| —ilm+g? (97]) 21 e"v; +V 1 VTS)
ST () m, 2l £ ) s S m (")
X Yol —il"m+ —)t‘+ (——) nen'y™ M =0. 19
|’§w nZl 218 v, ! ( € an Yi V7 VT8 | ;w nzl El ¢ =117 9
|
Here we used a relation Note that we have assumed
1 1 &2 1 g2 (1 g) ufP=v{P=n{P=0 (29
== == = 1-e =/
-1 -2 V7 l+ V V V . . L
eTlereTtvr Vrlied(Vr) V7 T for # =1, which means that the “carrier wave” is sinu-
(20) -
soidal.
Because the coefficients in Eq$7)—(19) are slow functions The coefficients ok in Egs.(17)—(19) yield relations
of t, r, and § in comparison with the “carrier” expl|wt 1
—mé-+\f(r)]}, we can assume that each Fourier component | e V&n( ) INF @, 9 (1)
i m - +i rngu~’+ —=(ngu
is linearly independent, and hence, E¢E7)—(19) demand (o=mi)n 73 (Mo (95( ou™)
vanishing of every Fourier coefficients separately. "
Now we separate terms in Eq4.7)—(19) into each order TN 1),,(1) _
of £. The coefficients of the order af! read(see the Ap- HIAT(r) 2 Mt =5 29
pendix
(1)
il on®+ilx ' (r)nouP—ilman=0, (21) il (w— mQ)u(Z)—v—g—zgu(Z)
|Iwu(l)—|ImQu(1)—ZQUF1)=27-riGen,(1)sgnl, (22)
+ > il (nu® uP=27iGenPsgnl,
1 op® u®— (1)— =
ilwv V' + == ZQ imQu,;~=0 (23 (30
for each Fourier componeht Equations(21)—(23) immedi- 0U|(1) 2
ately yield the linear dispersion relation Ed) and il(w—mQ)vP-V a—§+muf2)
ut)=—pnd), (29) =
+ X il (nu®,uP=0, (31)
v =7Fignt, (25 L o
where for eachl. Substituting Eqs(24)—(28) and|=2 into Egs.
(29—(31) gives
w—m
=—, (26) ul?=b,n{H?, 32
P A (r)ng 2 =bany (32
2 v =ib,n{H?, (33

- 2
a 20N F'(r)ng ol n?)=hsn{?, (34)
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where

_ (0-mQ)(— k>+47Gert (r)ng)
AN 4(0—mQ)2— K2+ 47Genf! (r)ng]
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V= 7TGn0€ 39
T w—mQ° (39)

Equation(39) determines the group velocity of the nonlinear

(350  wave. It might seem a contradiction that the right-hand side
of Eq.(39) is a function ofr, while V is a constant. However,
) k*(w—mQ)? Eq. (39) is locally justified by the fact that the mean fields
2= ; 2 ~ 2 2 ; ' are slow functions of.
AN Ang[4(0—mQ)" =k +AT7Gert (r)no(]36) Under the conditior{39), solutions to Eq(38) cannot be
determined uniformly, because the determinant of the matrix
Alw—mQ)? in the left-hand side is zero. Hence we assume
b= . (3
¥ ho[4(w—mQ)%— i+ 4wGent’ (r)ng] 37 n{?=0. (40)
Similarly substituting Eqs(24)—(28) andl =1 into Egs.(29)  Equations(38) and (40) yield
and(31) yield
( ) ’ . u(Z):; —[(V Op)n(l)]_ ﬂn@)
I(w—mQ) iNf (r)no 0 ng_z) 1 I)\f/(r) &g 1 )\f,(r)no 1
—27iGe i(0-mQ) 20 2) (41
0 < i( Q) ”(12) 1 aq on{®)
PYeY {o—m U1 (2) = _ ( )
I o] ~ign{®. (42)
(V+ngp) . .
3 Furthermore, we substitute=0 into Eqgs.(30) and (31)
antd and use Eq§12) and(24)-(28). Then the following equations
= -p oE (3g)  are obtained:
aniH @_2P )2
i Uy n , 43
iqVv g€ no| Tl (43
_ o ) . _ vi?=0. (44)
Since the determinant of the matrix in E§8) is zero due to
Egs.(21)—(23), there are no solutions to E(38) unless The coefficients ot in Egs.(17)—(19) read
|
on®  onM 1
il (0—mQ)n®—v——+ +—n0u|(l)+|l)\f (r)nou,(3)+—(n uf2)y
23 ar 23
” Imn on®
W@ 4 @@ Wy® imny _
+ ; [ll)\f r)(n u_ |,+n|, u_ |,)+(?§(n )} Tvl( )+Q an =0,
(45)
au® o 2 uM au®
il (0—mQ)u®—V (3’|§ +—+ Z il (0D u® 0@ u®)+u®, ﬁ'g Q—n—ZQv(3)=277iGen|(3),
(46)
80(2) w2 ” dv (,1) g™
(3 _y ' A €)' 1 ,@4 @ Wy @ Yl L
il (0—mQ)v! 5t o T agl +|,§w IO 0 0o uit, e 05 =0,
(47)
for eachl. Substitutingl =0 into Eq.(45) and using Eqgs(12) and(24) give
J @4 @) (1))2
(75( Vg~ +nguy” —2p|ni~|%)=0. (49

Substituting Eq(43) into Eq. (48) gives
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ang) 49
ﬁ_f_ ’ ( )

which can be immediately integrated as
N =y(n,7), (50)

where (7, 7) is an arbitrary function ofy and 7. Here we
assumey=0 to obtain

n{?=0. (51)
Forl=1, Egs.(45—(47) yield
i(0—mQ)nP+inf (rnou{®+g,=0, (52)

i(w—mQ)uP 200 -27iGenP+g,=0, (53

2

K
i(0—mQ)oP+ ——~uP+gz=0, (54)
20
where
on®  gnM  n, a inom
- 1 2y - 9 (1)
= + —uM+ —(nou
% T RVl e T RV
on{H
o +inf (NPuP+n@PuP+nuP
+nPud)), (55

au® oM gul®
=— - +Q +inf! S
92 PY: or an iNE () (uquy
+u@u), (56)
(2) (1) (1)
&Ul (9()1 (9U1
=_ + + FiNnf! (1),,(2)
g3=—V GE e Q P iNf (r)(2uivy

+ulPo M —uPy @), (57)
Under the condition given by Eql), Egs.(52)—(54) are not
independent with respect 1>, u{®, andv{®. Equation
(54) times 2Q/(w—m Q) minus Eq.(52) times 27Ge/(w
—m{)) becomes

2i00;—27Geg,

i(0—mQ)uP—2003-27iGenP+ R

=0, (58
where the dispersion relation E{) has been used. Compar-
ing Egs.(53) and(58), we obtain
(w—mQ)g,=—27Geg,+2i1QQg;. (59
Finally, we substitute Eq$24)—(28), (32)—(34), (40)—(44),
(51), and(55—(57) into Eq.(59) and assume that g, f'(r),
Q, andn, vary much slower than{®. Then, we obtain
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| a ] nM id,
! a_r+QE)”(11)+dl a£2 +7n(11)+d3|n(11’|2n(11)=0,
(60)
where
_ 2V(0—mQ)—27Geng+VA\E'(r) 61)
! 2(w—mO)NF'(r) ’
7Gen3\f'(r)(mg+p)
2= > , (62)
(0—mQ)2V
3(w—mQ)«?
= (63)

[k2+2(0—mQ)? 2’

Taking the limit of 7— o, Eq.(60) reduces into the nonlinear
Schralinger equation, which describes envelope soli{éis
We thus see that the spiral structure of galaxies approaches
to a solitonlike state.

Note that exfil[ ot—m#+Af(r)]} does not express an ob-
servable wave pattern any longer. In other words, the vari-
ablemis not a number of arms of a galaxy any longe&hich
used to be in the linear theory by Lin and Jf]). Instead,
explil[ ot—mé-+\f(r)]} expresses the carrier of the nonlinear
wave here.

IlI. NUMERICAL SOLUTIONS

Although Eq.(60) reduces into the nonlinear Schiinger
equation in the limit ofr—, no exact solutions to Eq60)
have been found fod,#0. In this section, we study the
solutions for finiter numerically.

If d,=0, the analytic solution to Eq60) is well known
to be

1) ds
ny’=AsechA~\/s—(&+V 7+ &)
2d,

o d,A2 V3 v, 64
expi| —— ad,)” Iz—dl(§+§1) (64)
for d;d3>0 or
1) ds
ni’=Atanh A/ — 55+ V 7+ &)
2d,
2
X exy i dAz—ﬁ —iﬁ(&f) (65)
744, 2d, 1

for d;d;<<0, whereA, V., &, and&; are arbitrary constants.
The constanfA determines the amplitude and the width of
the soliton,V, (andV) determinés) the group velocity, and
&o and ¢, determine the initial positions of the soliton and
the carrier wave, respectively. Equatiof@!) and (65) cor-
respond to the bright and dark solitons, respectively.
Figure 2 shows an analytic solution fdp=0 given by
Eqg. (64). Here d;=d3=1, A=2, V;=-10, &=6, &
=2.76, and the initial time;=1. We can see that an enve-
lope soliton propagates in thedirection without change of
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FIG. 2. An analytic solution fod,=0 given by Eq.(64). Here FIG. 3. A numerical solution fod,=1. Here 7,=0.25. The
d;=d3=1, A=2, V;=-10, §=6, £,=2.76, andry=1. initial position of the wave is the same as Fig. 2. We can see that

the amplitude decreases as the solitary wave propagates ié the
its shape. On the other hand, Figs. 3 and 4 show numericahrection.

solutions to Eq(60) for d,=1. The initial time7;=0.5 in

Fig. 3 and7y=0.1 in Fig. 4. The initial positions of the lar to galaxies except that electrons are repulsive while stars
soliton and the carrier wave in Figs. 3 and 4 are the same age attractive. Because of this nature of galaxies and non-
Fig. 2. We can see from these figures that the amplitude ofieutral plasmas, they exhibit similar collective phenomena
the solitary waves decreases as it propagates iif ttieec-  such as vorticeg7].

tion. This result is quite natural, because the wave propagat- The behavior of single-species non-neutral plasmas is of-
ing in the ¢ direction, which corresponds to the radial direc- ten analyzed under the assumption that they have an infinite
tion, decreases its energy denditiie 14 term in Eq.(60) length in the axial direction, while galaxies are often as-

comes from the 1/terms in Eqs(3)—(5)]. sumed to have a zero thickness. The advantage of the
infinite-length analysis is that the Poisson’s equation be-
IV. CONCLUDING REMARKS comes two dimensional, which makes our problem com-

) ) o . pletely two dimensional. Then the analysis is greatly simpli-
We have derived a nonlinear Schinger-type equation fied. It is meaningful to analyze the behavior of galaxies in

that describes a spiral structure of a galaxy. As is well knowrych a way because of its simplicity. Such an analysis is to
to plasma physics, the Langmuir wave, which is a densitype published elsewhere.

wave propagating on electrons, can generate an envelope
soliton that is described by a nonlinear Salirmer equation.

A galaxy is a gravitational many-body system, while a
plasma is an electromagnetic many-body system, which, in The authors are grateful to Dr. Tomoya Tatsuno for his
the electrostatic limit, obeys the same set of equationsuseful discussions.

Hence, the fact that the galactic density wave has a soliton-

like structure can be naturally deduced. A unique feature of APPENDIX

the present formalism is that a thin-disk geometry is consid-

ered and the soliton-like structure of a gravitational medium \We show that the following two equations are equivalent:
is obtained.

Galaxies resemble plasmas in that their components inter-
act with each other through a long range force produced by
the particles themselves. In particular, single-species non-
neutral plasmas such as pure electron plasmas are quite simi- =0 (V¢), (A1)
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FIG. 4. A numerical solution fod,=1. Herery=
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0.1.

XMW +ilY W +izMsgnl=0 (VI), (A2)

whereX(™, Y("  andz( are complex constants or slowly
varying functions ofp that satisfy the reality condition

X(M* =x ) (A3)
Y(* =y, (A4)
z(M* =z, (A5)

Equation(Al) can be written as
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Z [X(P=1Y(M)cogl @) — (XM +1Y{M)sin( ¢)]
+i|2 [X(P+1Y{M)codl @)

+ (X =1YM)sin(l @) ] - 2[22<“>cos<l<p>

+22Z(M sin(l¢)]=0, (A6)
where subscripts r and i denote the real part and imaginary
part, respectively. The second term of the left-hand side of
Eq. (A6) vanishes because of the reality condition Egs.
(A3)—(A5). Then Eq.(A6) becomes

2 [204P =1 =Z[P)codl )

—2(X{M+1Y{M+ZM)sin(l ¢)] =0 (A7)

Thus,
XMy _zM—o, (A8)
XM 41y (M 4 Z(W =, (A9)

for eachl>0. EquationgA8) and(A9) are identical to

XM+ily(W+izM=0 (1>0), (A10)
Taking complex conjugate on EGA10) gives
XM—ily®W—izMW=0 (1>0)
e XM+ilyM—izW=0 (1<0).
(A11)
Equations(A10) and (A11) are written as
XMW+ily (W+izMsgnl=0  (V1). (A12)
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